
asphalt-feedreader
Release 0.0.post9

Sep 27, 2017

Contents

1 Configuration 3
1.1 Setting up state stores . 3

2 Using feed readers 5
2.1 Creating new feeds on the fly . 5

3 Creating custom feed parsers 7

4 Version history 9

i

ii

asphalt-feedreader, Release 0.0.post9

This Asphalt framework component provides the ability to monitor syndication feeds like RSS and Atom. Arbitrary
HTML pages can also be scraped as feeds by means of a custom feed reader class.

Each feed is polled periodically and subscribers are notified of any newly published entries. There is also support for
persisting the state of each feed, so as not to report old items again when the application is restarted.

Contents 1

http://cyber.harvard.edu/rss/rss.html
https://tools.ietf.org/html/rfc4287

asphalt-feedreader, Release 0.0.post9

2 Contents

CHAPTER 1

Configuration

The component configuration of asphalt-feedreader lets you configure a number of syndication feeds and a number of
state stores for them (see below).

A basic configuration that creates a single feed pointing to CNN’s top stories might look like this:

components:
feedreader:
url: http://rss.cnn.com/rss/edition.rss

Once the component has started, the feed will be available as a resource of type FeedReader named default and
accessible as ctx.feed.

Notice that the above configuration automatically detects the feed reader class. To avoid the overhead of the initial
autodetection, we can tell the component directly what feed reader class to use. Since we know this particular feed is
an RSS feed, we can specify the reader option accordingly:

components:
feedreader:
url: http://rss.cnn.com/rss/edition.rss
reader: rss

For reference on what kinds of values are acceptable for the reader option, see the documentation of
create_feed().

Setting up state stores

State stores are repositories where a feed can save its persistent state, including its current metadata and the entry IDs
it has already seen. You can use feeds without state stores but if you restart the application, they may then report
previously seen entries again.

The following state stores are provided out of the box:

• asphalt.feedreader.stores.sqlalchemy

3

asphalt-feedreader, Release 0.0.post9

• asphalt.feedreader.stores.redis

• asphalt.feedreader.stores.mongodb

Each of these stores requires some database client resource, and the easiest way to get it is to use the corresponding
Asphalt component. For example, to configure a simple sqlite based SQLAlchemy store, you’d first install asphalt-
sqlalchemy and write the following configuration (following up from the previous examples):

components:
sqlalchemy:
url: sqlite:///feeds.sqlite

feedreader:
feeds:

cnn:
url: http://rss.cnn.com/rss/edition.rss
reader: rss
store: default

stores:
default:

type: sqlalchemy

Any options under each state store configuration besides type will be directly passed to the constructor of the store
class.

It is also possible to use a custom serializer with the built-in state stores, but that is usually unnecessary.

4 Chapter 1. Configuration

CHAPTER 2

Using feed readers

Feed readers are used by listening to their entry_discovered and metadata_changed signals. To continu-
ously print new entries as they come in, just stream events from the signal:

from async_generator import aclosing

async def print_events(ctx):
async with aclosing(ctx.feed.entry_discovered.stream_events()) as stream:

async for event in stream:
print('New event: {entry.title}'.format(entry=event.entry))

Or, if you prefer callbacks:

def new_entry_found(event):
print('New event: {entry.title}'.format(entry=event.entry))

ctx.feed.entry_discovered.connect(new_entry_found)

Note: Each feed reader class may have its own set of entry attributes beyond the ones in FeedEntry. See the API
documentation for each individual feed reader class.

Creating new feeds on the fly

If you need to create news feeds dynamically during the run time of your application, you can do so using the
create_feed() function.

5

asphalt-feedreader, Release 0.0.post9

6 Chapter 2. Using feed readers

CHAPTER 3

Creating custom feed parsers

If you have a website that does not provide an RSS or Atom feed natively, but nonetheless contain news items structured
in a manner that could be syndicated, it is possible to construct a tailored feed reader class for that particular website.
The parser would take the HTML content, parse it into a structured form (using BeautifulSoup or a similar tool) and
then extract the necessary information. The process is of course vulnerable to any structural changes made in the
HTML, but it’s still better than nothing.

To implement an HTML feed parser, you should inherit from the BaseFeedReader class and implement the
parse_document() method. This method must return a two element tuple containing:

• a dictionary of metadata attributes and values (can be just an empty dict)

• a list of dictionaries, each dictionary representing the constructor keyword arguments for EntryEvent

How the method extracts this information is entirely up to the implementation, but using either lxml.html or Beauti-
fulSoup directly is usually the most robust method. The implementation needs to return all the events found in the
document. The matter of filtering already seen events is taken care of in the update() method.

The only required piece of information for each event is the id of the event. This is the unique identifier of the event
which will be used for preventing already seen events from being dispatched from the event_discovered signal
of the feed. Other than that, you can fill in as many of the fields of EntryEvent as you like, or subclass the class to
contain extra attributes.

An example of a custom feed reader has been provided in examples/custom_html.py.

7

https://www.crummy.com/software/BeautifulSoup/
http://lxml.de/lxmlhtml.html
https://www.crummy.com/software/BeautifulSoup/
https://www.crummy.com/software/BeautifulSoup/
https://github.com/asphalt-framework/asphalt-feedreader/blob/master/examples/custom_html.py

asphalt-feedreader, Release 0.0.post9

8 Chapter 3. Creating custom feed parsers

CHAPTER 4

Version history

This library adheres to Semantic Versioning.

1.0.0

• Initial release

• API reference

9

http://semver.org/

	Configuration
	Setting up state stores

	Using feed readers
	Creating new feeds on the fly

	Creating custom feed parsers
	Version history

